论文标题
通过电子到非常低的能量的凝聚相生物材料中的激发和电离横截面:应用于液态水和遗传基础
Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks
论文作者
论文摘要
电子撞击产生的电子激发和电离是生物相关性材料中辐射诱导的损伤机制的关键过程,其基础是重要的医疗和技术应用,包括放射疗法,载人太空任务中的放射线保护以及纳米涂片设备的制造技术。但是,通过实验测量所有相关材料的所有必要的电子交互横截面都是一项艰巨的任务,因此有必要具有预测模型,足够准确但易于实现。在这项工作中,我们介绍了一个基于介电形式主义的模型,以考虑其凝结性的性质,以对复杂的生物分子培养基提供可靠的电离和激发横截面。我们说明了电子结合中的分子电子结构效应,以及对第一个诞生的近似值的高阶校正。一旦从实验或预测模型中知道了电子激发谱,则最终的方法可产生总电离横截面,二级电子的能量分布以及凝聚相生物材料的总电子激发横截面。将此方法的结果与水和DNA/RNA分子构建块中的可用实验数据进行了比较,从电子束的巨大值到激发阈值,显示出非常好的一致性和广泛的电子入射能的巨大预测能力。提出的模型构成了一个非常有用的程序,用于计算在各种电子入射能中任意生物材料的电子相互作用横截面。
Electronic excitations and ionisations produced by electron impact are key processes in the radiation-induced damage mechanisms in materials of biological relevance, underlying important medical and technological applications, including radiotherapy, radiation protection in manned space missions and nanodevice fabrication techniques. However, experimentally measuring all the necessary electronic interaction cross-sections for every relevant material is an arduous task, so it is necessary having predictive models, sufficiently accurate yet easily implementable. In this work we present a model, based on the dielectric formalism, to provide reliable ionisation and excitation cross-sections for electron-impact on complex biomolecular media, taking into account their condensed-phase nature. We account for the indistinguishability and exchange between the primary beam and excited electrons, for the molecular electronic structure effects in the electron binding, as well as for higher-order corrections to the first Born approximation. The resulting approach yields total ionisation cross-sections, energy distributions of secondary electrons, and total electronic excitation cross-sections for condensed-phase biomaterials, once the electronic excitation spectrum is known, either from experiments or from a predictive model. The results of this methodology are compared with the available experimental data in water and DNA/RNA molecular building blocks, showing a very good agreement and a great predictive power in a wide range of electron incident energies, from the large values characteristic of electron beams down to excitation threshold. The proposed model constitutes a very useful procedure for computing the electronic interaction cross-sections for arbitrary biological materials in a wide range of electron incident energies.