论文标题
在热力学计算的指导下的外延PR2IR2O7薄膜的原位合成的途径
Route to in situ synthesis of epitaxial Pr2Ir2O7 thin films guided by thermodynamic calculations
论文作者
论文摘要
由于低温下IR的反应性低以及挥发性气体物种(例如IRO3(g)(G)和IRO2(g))在高温和高氧气部分压力下,因此IR的反应性低以及挥发性气体种类的蒸发率低,因此,pyrochlore虹彩薄膜的原位生长一直是一个长期存在的挑战。为了应对这一挑战,我们将PR-IR-O2系统的热力学分析与常规物理蒸气沉积(PVD)技术的实验结果结合在一起。我们的结果表明,只有高生长温度产生的结晶度足以利用和调整所需的拓扑电子特性。热力学计算表明,稳定PR2IR2O7需要高沉积温度和气体物种O2(G)和IRO3(G)的高部分压力。我们进一步发现,通过任何常规的PVD技术都可以实现的气体物种部分压力需求。我们在实验上表明,常规PVD生长参数仅产生PR3IRO7,这是我们通过理论计算来繁殖的结论。我们的发现提供了可靠的证据,表明PR2IR2O7薄膜的原位合成是由于无法在10 TORR的阶面生长而束缚的,这是PVD过程固有的限制。因此,我们认为高压技术,特别是化学蒸气沉积(CVD),是PR2IR2O7合成的途径,因为这可以在PR2IR2O7的原位稳定下支持薄膜沉积。
In situ growth of pyrochlore iridate thin films has been a long-standing challenge due to the low reactivity of Ir at low temperatures and the vaporization of volatile gas species such as IrO3(g) and IrO2(g) at high temperatures and high oxygen partial pressures. To address this challenge, we combine thermodynamic analysis of the Pr-Ir-O2 system with experimental results from the conventional physical vapor deposition (PVD) technique of co-sputtering. Our results indicate that only high growth temperatures yield films with crystallinity sufficient for utilizing and tailoring the desired topological electronic properties. Thermodynamic calculations indicate that high deposition temperatures and high partial pressures of gas species O2(g) and IrO3(g), are required to stabilize Pr2Ir2O7. We further find that the gas species partial pressure requirements are beyond that achievable by any conventional PVD technique. We experimentally show that conventional PVD growth parameters produce exclusively Pr3IrO7, which conclusion we reproduce with theoretical calculations. Our findings provide solid evidence that in situ synthesis of Pr2Ir2O7 thin films is fettered by the inability to grow with oxygen partial pressure on the order of 10 Torr, a limitation inherent to the PVD process. Thus, we suggest high-pressure techniques, in particular chemical vapor deposition (CVD), as a route to synthesis of Pr2Ir2O7, as this can support thin film deposition under the high pressure needed for in situ stabilization of Pr2Ir2O7.