论文标题
$ \ mathbf {zf} $中的剩余第二个紧凑型豪斯多夫空间和两个新的无限概念
Second-countable compact Hausdorff spaces as remainders in $\mathbf{ZF}$ and two new notions of infiniteness
论文作者
论文摘要
在没有选择的公理的情况下,对于本地紧凑的Hausdorff空间来说,具有所有不空的第二个紧凑型Hausdorff空间的必要条件和足够的条件,因为$ \ Mathbf {ZF} $中剩下的剩余时间。除其他独立性结果外,在$ \ Mathbf {Zfc} $中获得了所有不空的Metrization紧凑型空间的局部紧凑型Hausdorff空间的表征,被证明是$ \ Mathbf {Zfc} $所获得的。 Urysohn的Metrrization定理概括为以下定理:每个$ T_3 $ -SPACE,它可以承认以有限集的可数值结合来表达的基础。显示了有关$ \ Mathbf {ZF} $中某些特殊Metrizable Compactifications存在的问题解决方案的应用。引入了强滤基库无限集和二分发滤底无限集的新概念,这两者都源于对紧凑型的研究。给出了新概念的设置理论和拓扑定义,并在$ \ mathbf {zf} $中研究了它们与某些已知的无限集的概念的关系。引入了一个新的置换模型,其中存在一个强烈的滤波器basase无限集,该集合薄弱。所有$ \ mathbf {ZFA} $ - 本文的独立结果可转移到$ \ Mathbf {ZF} $。
In the absence of the Axiom of Choice, necessary and sufficient conditions for a locally compact Hausdorff space to have all non-empty second-countable compact Hausdorff spaces as remainders are given in $\mathbf{ZF}$. Among other independence results, the characterization of locally compact Hausdorff spaces having all non-empty metrizable compact spaces as remainders, obtained by Hatzenhuhler and Mattson in $\mathbf{ZFC}$, is proved to be independent of $\mathbf{ZF}$. Urysohn's Metrization Theorem is generalized to the following theorem: every $T_3$-space which admits a base expressible as a countable union of finite sets is metrizable. Applications to solutions of problems concerning the existence of some special metrizable compactifications in $\mathbf{ZF}$ are shown. New concepts of a strongly filterbase infinite set and a dyadically filterbase infinite set are introduced, both stemming from the investigations on compactifications. Set-theoretic and topological definitions of the new concepts are given, and their relationship with certain known notions of infinite sets is investigated in $\mathbf{ZF}$. A new permutation model is introduced in which there exists a strongly filterbase infinite set which is weakly Dedekind-finite. All $\mathbf{ZFA}$-independence results of this article are transferable to $\mathbf{ZF}$.