论文标题
分层聚类的交互式转向
Interactive Steering of Hierarchical Clustering
论文作者
论文摘要
分层聚类是组织大数据进行探索性数据分析的重要技术。但是,现有的一定大小的层次结构聚类方法通常无法满足不同用户的各种需求。为了应对这一挑战,我们提出了一种交互式转向方法,可以通过利用公共知识(例如Wikipedia)和用户的私人知识来视觉监督受约束的层次聚类。我们方法的新颖性包括1)使用知识(知识驱动)和内在数据分布(数据驱动)自动构建层次聚类的约束,以及2)通过视觉接口(用户驱动)启用聚类的交互式转向。我们的方法首先将每个数据项映射到知识库中最相关的项目。然后,使用蚂蚁集属优化算法提取初始约束树。该算法平衡树宽度和深度,并以高信心覆盖数据项。给定约束树,使用进化贝叶斯玫瑰树将数据项在层次上聚集。为了清楚地传达层次结构的聚类结果,已经开发了不确定性的树可视化,以使用户能够快速找到最不确定的子层次结构并进行交互改进。定量评估和案例研究表明,提出的方法促进了以有效而有效的方式建造定制的聚类树。
Hierarchical clustering is an important technique to organize big data for exploratory data analysis. However, existing one-size-fits-all hierarchical clustering methods often fail to meet the diverse needs of different users. To address this challenge, we present an interactive steering method to visually supervise constrained hierarchical clustering by utilizing both public knowledge (e.g., Wikipedia) and private knowledge from users. The novelty of our approach includes 1) automatically constructing constraints for hierarchical clustering using knowledge (knowledge-driven) and intrinsic data distribution (data-driven), and 2) enabling the interactive steering of clustering through a visual interface (user-driven). Our method first maps each data item to the most relevant items in a knowledge base. An initial constraint tree is then extracted using the ant colony optimization algorithm. The algorithm balances the tree width and depth and covers the data items with high confidence. Given the constraint tree, the data items are hierarchically clustered using evolutionary Bayesian rose tree. To clearly convey the hierarchical clustering results, an uncertainty-aware tree visualization has been developed to enable users to quickly locate the most uncertain sub-hierarchies and interactively improve them. The quantitative evaluation and case study demonstrate that the proposed approach facilitates the building of customized clustering trees in an efficient and effective manner.