论文标题

零件感知人员重新识别的批处理连贯驱动的网络

Batch Coherence-Driven Network for Part-aware Person Re-Identification

论文作者

Wang, Kan, Wang, Pengfei, Ding, Changxing, Tao, Dacheng

论文摘要

现有的零件感知人员重新识别方法通常采用两个单独的步骤:即身体部位检测和零件级特征提取。但是,部分检测引入了额外的计算成本,对于低质量图像而言,固有的具有挑战性。因此,在这项工作中,我们提出了一个名为批处理相干驱动的网络(BCD-NET)的简单框架,该框架在训练阶段和测试阶段绕过身体部位检测,同时仍在学习语义对齐的零件特征。我们的主要观察结果是,一批图像中的统计数据是稳定的,因此批处理级别的约束是可靠的。首先,我们引入了批处理相干引导的通道注意(BCCA)模块,该模块从深骨干模型的输出中突出显示了每个部分的相关通道。我们使用一批训练图像调查了通道部分的对应关系,然后施加了一个新的批次级监督信号,该信号可帮助BCCA识别相关的通道。其次,在整个训练过程中,身体部位的平均位置是强大的,因此在批处理之间相干。因此,我们根据批次之间的语义一致性介绍了一对正规化项。第一个术语规定了一个批次在一个批处理中为每个部分的BCD-NET的高响应,以便在预定义的区域内限制它,而第二个则鼓励BCD-NETS响应的总体响应的总和覆盖整个人体。以上约束指导BCD-NET学习多样化,互补和语义上的零件级别特征。广泛的实验结果表明,BCDNET始终在四个大规模的REID基准上实现最先进的性能。

Existing part-aware person re-identification methods typically employ two separate steps: namely, body part detection and part-level feature extraction. However, part detection introduces an additional computational cost and is inherently challenging for low-quality images. Accordingly, in this work, we propose a simple framework named Batch Coherence-Driven Network (BCD-Net) that bypasses body part detection during both the training and testing phases while still learning semantically aligned part features. Our key observation is that the statistics in a batch of images are stable, and therefore that batch-level constraints are robust. First, we introduce a batch coherence-guided channel attention (BCCA) module that highlights the relevant channels for each respective part from the output of a deep backbone model. We investigate channelpart correspondence using a batch of training images, then impose a novel batch-level supervision signal that helps BCCA to identify part-relevant channels. Second, the mean position of a body part is robust and consequently coherent between batches throughout the training process. Accordingly, we introduce a pair of regularization terms based on the semantic consistency between batches. The first term regularizes the high responses of BCD-Net for each part on one batch in order to constrain it within a predefined area, while the second encourages the aggregate of BCD-Nets responses for all parts covering the entire human body. The above constraints guide BCD-Net to learn diverse, complementary, and semantically aligned part-level features. Extensive experimental results demonstrate that BCDNet consistently achieves state-of-the-art performance on four large-scale ReID benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源