论文标题

带有内存的平价时间对称系统

Parity-time symmetric systems with memory

论文作者

Cochran, Zachary A., Saxena, Avadh, Joglekar, Yogesh N.

论文摘要

具有平衡收益和损失的经典开放系统,即平等时代($ \ Mathcal {pt} $)对称系统,在过去十年中引起了极大的关注。它们的异国特性来自于控制其动力学的非热汉密尔顿人的特殊点(EP)。近年来,已经研究了越来越复杂的$ \ MATHCAL {PT} $ - 对称系统,并进行了时间周期性(FLOQUET)驾驶,时间周期性的增益和损失以及时间延迟的耦合,并且已经研究了这些系统,这些系统已在众多平台中实现了众多平台,由光学,声音,声音,机械,机械omecyrical,Electrical,电动器,电动器,电动器,电动器和电动器和电动器,和电动器,电动机和电动器。在这里,我们在内存中介绍了$ \ Mathcal {pt} $ - 对称(平衡增益和损失)系统,并在分析和数值上研究其动态。我们的模型由两个耦合的$ LC $振荡器组成,分别具有积极和负电阻。我们通过用回忆器替换电阻或与memincontor的耦合电感来介绍记忆,并研究以$ \ Mathcal {pt} $ - 对称或$ \ Mathcal {pt} $对称的对称的对称的损坏阶段为特征的电路能量动力学。由于产生的非线性,我们发现能量动力学取决于初始电压和电流的符号和强度,以及在其不同组件上的初始电路能量的分布。令人惊讶的是,在强烈的输入下,该系统表现出自组织的浮动动力学,包括$ \ Mathcal {pt} $ - 对称性的损坏相位,在消失的小耗散强度下。我们的结果表明,带有内存的$ \ Mathcal {pt} $ - 对称系统显示了丰富的景观。

Classical open systems with balanced gain and loss, i.e. parity-time ($\mathcal{PT}$) symmetric systems, have attracted tremendous attention over the past decade. Their exotic properties arise from exceptional point (EP) degeneracies of non-Hermitian Hamiltonians that govern their dynamics. In recent years, increasingly sophisticated models of $\mathcal{PT}$-symmetric systems with time-periodic (Floquet) driving, time-periodic gain and loss, and time-delayed coupling have been investigated, and such systems have been realized across numerous platforms comprising optics, acoustics, mechanical oscillators, optomechanics, and electrical circuits. Here, we introduce a $\mathcal{PT}$-symmetric (balanced gain and loss) system with memory, and investigate its dynamics analytically and numerically. Our model consists of two coupled $LC$ oscillators with positive and negative resistance, respectively. We introduce memory by replacing either the resistor with a memristor, or the coupling inductor with a meminductor, and investigate the circuit energy dynamics as characterized by $\mathcal{PT}$-symmetric or $\mathcal{PT}$-symmetry broken phases. Due to the resulting nonlinearity, we find that energy dynamics depend on the sign and strength of initial voltages and currents, as well as the distribution of initial circuit energy across its different components. Surprisingly, at strong inputs, the system exhibits self-organized Floquet dynamics, including $\mathcal{PT}$-symmetry broken phase at vanishingly small dissipation strength. Our results indicate that $\mathcal{PT}$-symmetric systems with memory show a rich landscape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源