论文标题
旋转和轨道波动对lavo $ {} _ {3} $薄膜的莫特 - 哈伯克式激子动态的影响
Influence of spin and orbital fluctuations on Mott-Hubbard exciton dynamics in LaVO${}_{3}$ Thin Films
论文作者
论文摘要
最近的光导率测量显示了某些Mott绝缘子中存在Hubbard激子。鉴于这些结果,重要的是要重新审视这些材料的动态,以解释激子相关性。我们使用UltraFast光学泵送型光谱法研究了时间分辨的激发和放松动力学作为perovskite-type lavo $ {} _ {3} $薄膜中温度的函数的函数。 lavo $ {} _ {3} $在大致相同的临界温度$ t_c \ cong 140 \ k $下进行一系列相过渡,包括二阶磁相过渡(pm $ \ xrightArrow {} $ afm)和一阶结构相过渡和\ textit { \ textit {g} -type轨道顺序(OO)。 1.6 eV时的超快光泵探针光谱监测哈伯德激子共振的光谱重量变化,该共振是自旋和轨道波动动力学的敏感记者。我们观察到旋转的急剧减慢,尽管过渡的(弱)一阶性质(弱),但在$ t_c \ cong 140 $ k附近的轨道动力学,让人联想到二阶过渡。我们强调的是,由于探测的光谱重量变化,因此测得的动力学不能反映传统的激子的产生和重组,而是与在存在波动的多体环境的情况下与哈伯德激子形成的动力学有关。
Recent optical conductivity measurements reveal the presence of Hubbard excitons in certain Mott insulators. In light of these results, it is important to revisit the dynamics of these materials to account for excitonic correlations. We investigate time-resolved excitation and relaxation dynamics as a function of temperature in perovskite-type LaVO${}_{3}$ thin films using ultrafast optical pump-probe spectroscopy. LaVO${}_{3}$ undergoes a series of phase transitions at roughly the same critical temperature $T_C\cong 140\ K$, including a second-order magnetic phase transition (PM $\xrightarrow{}$ AFM) and a first-order structural phase transition, accompanied by \textit{C}-type spin order (SO) and \textit{G}-type orbital order (OO). Ultrafast optical pump-probe spectroscopy at 1.6 eV monitors changes in the spectral weight of the Hubbard exciton resonance which serves as a sensitive reporter of spin and orbital fluctuation dynamics. We observe dramatic slowing down of the spin, and orbital dynamics in the vicinity of $T_C\cong 140$ K, reminiscent of a second-order phase transition, despite the (weakly) first-order nature of the transition. We emphasize that since it is spectral weight changes that are probed, the measured dynamics are not reflective of conventional exciton generation and recombination, but are related to the dynamics of Hubbard exciton formation in the presence of a fluctuating many-body environment.