论文标题
随机邻居嵌入高斯和学生-T分布:教程和调查
Stochastic Neighbor Embedding with Gaussian and Student-t Distributions: Tutorial and Survey
论文作者
论文摘要
随机邻居嵌入(SNE)是一种具有概率方法的多种学习和降低方法。在SNE中,每个点都被认为是所有其他点的邻居,并且尝试将这种概率保存在嵌入空间中。 SNE认为在输入空间和嵌入空间中的概率都认为高斯分布。但是,T-SNE分别在这些空间中使用了Student-T和高斯分布。在本教程和调查论文中,我们解释了SNE,对称SNE,T-SNE(或Cauchy-Sne)和T-SNE具有一般自由度。我们还涵盖了这些方法的样本外扩展和加速度。
Stochastic Neighbor Embedding (SNE) is a manifold learning and dimensionality reduction method with a probabilistic approach. In SNE, every point is consider to be the neighbor of all other points with some probability and this probability is tried to be preserved in the embedding space. SNE considers Gaussian distribution for the probability in both the input and embedding spaces. However, t-SNE uses the Student-t and Gaussian distributions in these spaces, respectively. In this tutorial and survey paper, we explain SNE, symmetric SNE, t-SNE (or Cauchy-SNE), and t-SNE with general degrees of freedom. We also cover the out-of-sample extension and acceleration for these methods.