论文标题
在szegő内核渐近扩张的系数上
On the coefficients of the equivariant Szegő kernel asymptotic expansions
论文作者
论文摘要
令$(x,t^{1,0} x)$为一个紧凑的连接定向的强烈pseudoconvex cr dimension $ 2n+1 $,$ n \ geq1 $。假设$ x $承认一个连接的紧凑型谎言组$ g $动作和横向cr $ s^1 $动作,我们计算了对$ s^1 $ Action的前两个下两个较低级术语的系数。
Let $(X, T^{1,0}X)$ be a compact connected orientable strongly pseudoconvex CR manifold of dimension $2n+1$, $n\geq1$. Assume that $X$ admits a connected compact Lie group $G$ action and a transversal CR $S^1$ action, we compute the coefficients of the first two lower order terms of the equivariant Szegő kernel asymptotic expansions with respect to the $S^1$ action.