论文标题

通过平滑 - 帕斯分解部分可观察到的在线变更检测

Partially Observable Online Change Detection via Smooth-Sparse Decomposition

论文作者

Guo, Jie, Yan, Hao, Zhang, Chen, Hoi, Steven

论文摘要

我们考虑在线变更检测高维数据流的稀疏变化,在每个传感时间点,由于感应能力有限,只能在每个传感时间点观察到一部分数据流。一方面,检测方案应该能够处理部分可观察到的数据,同时具有有效的检测能力来稀疏变化。另一方面,该方案应能够自适应地选择最重要的变量,以观察以最大化检测能力。为了解决这两个要点,在本文中,我们提出了一种名为CDSSD的新型检测方案。特别是,它描述了高维数据的结构,其通过平滑 - 帕斯斯分解而变化稀疏,可以通过Spike-Slab变化贝叶斯推断来学习其参数。然后,将学习参数和稀疏变化信息的后贝叶斯因子作为检测统计量提出。最后,提出了基于汤普森采样的自适应抽样策略,将统计数据作为组合多臂匪徒问题的奖励。我们方法在实践中的疗效和适用性通过数值研究和实际案例研究来证明。

We consider online change detection of high dimensional data streams with sparse changes, where only a subset of data streams can be observed at each sensing time point due to limited sensing capacities. On the one hand, the detection scheme should be able to deal with partially observable data and meanwhile have efficient detection power for sparse changes. On the other, the scheme should be able to adaptively and actively select the most important variables to observe to maximize the detection power. To address these two points, in this paper, we propose a novel detection scheme called CDSSD. In particular, it describes the structure of high dimensional data with sparse changes by smooth-sparse decomposition, whose parameters can be learned via spike-slab variational Bayesian inference. Then the posterior Bayes factor, which incorporates the learned parameters and sparse change information, is formulated as a detection statistic. Finally, by formulating the statistic as the reward of a combinatorial multi-armed bandit problem, an adaptive sampling strategy based on Thompson sampling is proposed. The efficacy and applicability of our method in practice are demonstrated with numerical studies and a real case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源