论文标题
热力学卡西米尔在$ n \ to \ indy $ class内强烈各向异性系统中
Thermodynamic Casimir forces in strongly anisotropic systems within the $N\to \infty$ class
论文作者
论文摘要
我们分析了从矢量几何形状中的矢量$ n \ to \ infty $类中强烈的弧形系统中的热力学卡西米尔效应。采用不完善的(平均场)Bose气体作为代表性的例子,我们证明了空间维度$ d $在确定有效波动介导的相互作用的特征中的关键作用。对于特定的,物理上可以想象的各向异性分散和周期性边界条件,我们表明,临界和低温阶段的casimir力对于维度$ d \ in(\ frac {5} {5} {2} {2} {2},4)\ cup(6,8) (4,6)\杯(8,10)\ cup \ dots $。我们认为,对于$ d \ in \ {4,6,8 \ dots \} $,Casimir交互完全消失在缩放限制中。我们讨论了我们对以$ 1/n> 0 $为特征的系统的含义,并在量子相变的背景下实现了可能的实现。
We analyze the thermodynamic Casimir effect in strongly anizotropic systems from the vectorial $N\to\infty$ class in a slab geometry. Employing the imperfect (mean-field) Bose gas as a representative example, we demonstrate the key role of spatial dimensionality $d$ in determining the character of the effective fluctuation-mediated interaction between the confining walls. For a particular, physically conceivable choice of anisotropic dispersion and periodic boundary conditions, we show that the Casimir force at criticality as well as within the low-temperature phase is repulsive for dimensionality $d\in (\frac{5}{2},4)\cup (6,8)\cup (10,12)\cup\dots$ and attractive for $d\in (4,6)\cup (8,10)\cup \dots$. We argue, that for $d\in\{4,6,8\dots\}$ the Casimir interaction entirely vanishes in the scaling limit. We discuss implications of our results for systems characterized by $1/N>0$ and possible realizations in the context of quantum phase transitions.