论文标题

高阶浮雕拓扑阶段的层次结构三维

Hierarchy of higher-order Floquet topological phases in three dimensions

论文作者

Nag, Tanay, Juricic, Vladimir, Roy, Bitan

论文摘要

遵循定期驱动静态一阶拓扑阶段(支撑表面状态)的一般协议,具有适当的离散对称性打破Wilson-Dirac质量,在这里,我们在三个维度上构建了高阶Floquet拓扑阶段的层次结构。特别是,我们通过定期以一个和两个离散的对称性破坏Wilson-Dirac Mass(ES)的态度来驱动其静态的一阶母体状态,从而证明了二阶和三阶浮子拓扑状态的实现,分别支持了零ic否属策略的动态铰链和角模式。尽管静态表面状态的特征是condimension $ d_c = 1 $,但由\ emph {antinality}频谱或粒子孔对称对称的产生的动态铰链(角)模式生存,以$ d_c = 2 $(3)$生活在边界上。我们为三维拓扑绝缘子和狄拉克半学的这些结果举例说明了这些结果,后者遵循任意旋转$ j $表示。

Following a general protocol of periodically driving static first-order topological phases (supporting surface states) with suitable discrete symmetry breaking Wilson-Dirac masses, here we construct a hierarchy of higher-order Floquet topological phases in three dimensions. In particular, we demonstrate realizations of both second-order and third-order Floquet topological states, respectively supporting dynamic hinge and corner modes at zero quasienergy, by periodically driving their static first-order parent states with one and two discrete symmetry breaking Wilson-Dirac mass(es). While the static surface states are characterized by codimension $d_c=1$, the resulting dynamic hinge (corner) modes, protected by \emph{antiunitary} spectral or particle-hole symmetries, live on the boundaries with $d_c=2$ $(3)$. We exemplify these outcomes for three-dimensional topological insulators and Dirac semimetals, with the latter ones following an arbitrary spin-$j$ representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源