论文标题
来自原子尺度模拟的无定形碳断裂韧性的定量预测
Quantitative prediction of the fracture toughness of amorphous carbon from atomic-scale simulations
论文作者
论文摘要
断裂是无定形碳(A-C)膜失败的最终来源,但是测量来自纳米固定测试的A-C的断裂特性是一项挑战,而报告实验的结果不一致。在这里,我们使用原子尺度模拟对A-C断裂进行定量和机械预测。对裂纹传播的系统大尺度K场对原子尺度模拟进行了对$ρ= 2.5,\,3.0 \,\ text {and} 3.5〜 \ text {g/cm}^{3} $ Quenches创建的Quench范围$ \ \ \ \ \ \ \ \ \ text {3.5〜 \ text {g/cm} 3.5〜\ text {and}的a-c样品的模拟。 1000〜 \ text {k/ps} $。模拟表明,裂纹是通过核的构成,生长和空隙结合传播的。 $ \约1 \,\ text {nm} $之间的距离,核定空隙之间的距离导致了脆性的断裂韧性。我们使用Drugan提出的裂纹生长标准,大米\&Sham根据我们的短裂纹断裂模拟估算稳态骨折韧性。分裂韧性值$ 2.4-6.0 \,\ text {mpa} \ sqrt {\ text {m}} $用于启动,$ 3-10 \,\ text {mpa} \ sqrt {\ sqrt {\ sqrt {\ text {m}} $在稳定型裂缝中都在实验中均在实验中。这些发现表明,即使对于具有延展性裂纹繁殖机制的材料破裂,原子尺度的模拟也可以提供定量预测的结果。
Fracture is the ultimate source of failure of amorphous carbon (a-C) films, however it is challenging to measure fracture properties of a-C from nano-indentation tests and results of reported experiments are not consistent. Here, we use atomic-scale simulations to make quantitative and mechanistic predictions on fracture of a-C. Systematic large-scale K-field controlled atomic-scale simulations of crack propagation are performed for a-C samples with densities of $ρ=2.5, \, 3.0 \, \text{ and } 3.5~\text{g/cm}^{3}$ created by liquid quenches for a range of quench rates $\dot{T}_q = 10 - 1000~\text{K/ps}$. The simulations show that the crack propagates by nucleation, growth, and coalescence of voids. Distances of $ \approx 1\, \text{nm}$ between nucleated voids result in a brittle-like fracture toughness. We use a crack growth criterion proposed by Drugan, Rice \& Sham to estimate steady-state fracture toughness based on our short crack-length fracture simulations. Fracture toughness values of $2.4-6.0\,\text{MPa}\sqrt{\text{m}}$ for initiation and $3-10\,\text{MPa}\sqrt{\text{m}}$ for the steady-state crack growth are within the experimentally reported range. These findings demonstrate that atomic-scale simulations can provide quantitatively predictive results even for fracture of materials with a ductile crack propagation mechanism.