论文标题

使用图形神经网络展开WMMSE以有效的功率分配

Unfolding WMMSE using Graph Neural Networks for Efficient Power Allocation

论文作者

Chowdhury, Arindam, Verma, Gunjan, Rao, Chirag, Swami, Ananthram, Segarra, Santiago

论文摘要

我们研究了单跳临时无线网络中最佳功率分配的问题。在解决此问题时,我们偏离了经典的纯粹基于模型的方法,并提出了一种混合方法,该方法将关键建模元素与数据驱动组件结合在一起。更确切地说,我们提出了一个由迭代加权最小平方误差(WMMSE)方法的算法展开启发的神经网络架构,我们用展开的WMMSE(UWMMSE)表示。 UWMMSE中的可学习权重使用图形神经网络(GNN)进行参数化,其中随时间变化的基础图由无线网络中的褪色干扰系数给出。这些GNN是根据电力分配问题的多个实例通过梯度下降方法训练的。我们表明,所提出的体系结构是置换式的,从而促进了跨网络拓扑的普遍性。全面的数值实验说明了UWMMSE获得的性能以及其对超参数选择的鲁棒性以及可普遍性的,例如不同的场景,例如不同的网络密度和网络大小。

We study the problem of optimal power allocation in a single-hop ad hoc wireless network. In solving this problem, we depart from classical purely model-based approaches and propose a hybrid method that retains key modeling elements in conjunction with data-driven components. More precisely, we put forth a neural network architecture inspired by the algorithmic unfolding of the iterative weighted minimum mean squared error (WMMSE) method, that we denote by unfolded WMMSE (UWMMSE). The learnable weights within UWMMSE are parameterized using graph neural networks (GNNs), where the time-varying underlying graphs are given by the fading interference coefficients in the wireless network. These GNNs are trained through a gradient descent approach based on multiple instances of the power allocation problem. We show that the proposed architecture is permutation equivariant, thus facilitating generalizability across network topologies. Comprehensive numerical experiments illustrate the performance attained by UWMMSE along with its robustness to hyper-parameter selection and generalizability to unseen scenarios such as different network densities and network sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源