论文标题

在卡拉比YAU上计数不正当的相干系统4倍

Counting perverse coherent systems on Calabi-Yau 4-folds

论文作者

Cao, Yalong, Toda, Yukinobu

论文摘要

Nagao-Nakajima引入了在Calabi-Yau的小分辨率3倍的小分辨率上引入了稳定的不正当系统的计数,并在已解决的Conifold上确定了它们。他们的不变性在某些稳定条件的会议室中恢复了DT/PT不变性和Szendröi的非交往不变。在本文中,我们研究了他们在4倍4倍的Calabi-Yau上的工作的类似物。我们使用主要插入来定义稳定的变态相干系统的计数不变性,并在所有稳定条件下计算它们。我们还研究了局部解决的Conifold $ \ Mathcal {O} _ {\ Mathbb {p}^1}( - 1,-1,0)$不变的计数。我们猜想了它们的墙壁交叉公式,该公式在尺寸还原时恢复了nagao-nakajima在解决方案上的墙壁交叉公式。

Nagao-Nakajima introduced counting invariants of stable perverse coherent systems on small resolutions of Calabi-Yau 3-folds and determined them on the resolved conifold. Their invariants recover DT/PT invariants and Szendröi's non-commutative invariants in some chambers of stability conditions. In this paper, we study an analogue of their work on Calabi-Yau 4-folds. We define counting invariants for stable perverse coherent systems using primary insertions and compute them in all chambers of stability conditions. We also study counting invariants of local resolved conifold $\mathcal{O}_{\mathbb{P}^1}(-1,-1,0)$ defined using torus localization and tautological insertions. We conjecture a wall-crossing formula for them, which upon dimensional reduction recovers Nagao-Nakajima's wall-crossing formula on resolved conifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源