论文标题

在医学成像中针对对抗性扰动的分割模型的鲁棒化

Robustification of Segmentation Models Against Adversarial Perturbations In Medical Imaging

论文作者

Park, Hanwool, Bayat, Amirhossein, Sabokrou, Mohammad, Kirschke, Jan S., Menze, Bjoern H.

论文摘要

本文提出了一个新颖而有效的防御框架,用于针对医学成像中的对抗攻击的分割模型。与针对广泛研究的分类模型的对抗性攻击的防御方法相反,对分割模型的这种防御方法的探索较少。我们提出的方法可用于任何深度学习模型,而无需修改目标深度学习模型,并且可以独立于对抗攻击。我们的框架由频域转换器,检测器和改革者组成。频域转换器通过使用图像的框架域来帮助检测器检测对抗示例。改革者帮助目标模型更准确地预测。我们有实验可以从经验上表明,与现有的防御方法相比,我们所提出的方法的性能更好。

This paper presents a novel yet efficient defense framework for segmentation models against adversarial attacks in medical imaging. In contrary to the defense methods against adversarial attacks for classification models which widely are investigated, such defense methods for segmentation models has been less explored. Our proposed method can be used for any deep learning models without revising the target deep learning models, as well as can be independent of adversarial attacks. Our framework consists of a frequency domain converter, a detector, and a reformer. The frequency domain converter helps the detector detects adversarial examples by using a frame domain of an image. The reformer helps target models to predict more precisely. We have experiments to empirically show that our proposed method has a better performance compared to the existing defense method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源