论文标题

大型网络上具有捕食者 - 捕获相互作用的动力系统是稳定的,并且展示了振荡

Dynamical systems on large networks with predator-prey interactions are stable and exhibit oscillations

论文作者

Mambuca, Andrea Marcello, Cammarota, Chiara, Neri, Izaak

论文摘要

我们分析了在稀疏,随机图上定义的线性动力学系统的稳定性。这些系统的目的是建模在复杂网络上定义的大系统中固定点的稳定性,例如,由大量通过食品网络相互作用的物种组成的生态系统。我们开发了相应稀疏雅各布矩阵的光谱分布和领先特征值的精确理论。该理论表明,局部互动的本质对系统的稳定性有很大影响。我们表明,通常,在随机图上定义的线性动力学系统,如果它们足够大,则无界支持的规定程度分布将不稳定,这意味着稳定性和多样性之间的权衡。值得注意的是,与通用情况相反,仅包含捕食者 - 捕食类型相互作用的拮抗系统可以在无限尺寸限制中保持稳定。当扰动后,当图形的平均程度足够小时,这种拮抗系统的定性特征伴随着系统动力响应的特殊振荡行为。此外,对于拮抗系统,我们还发现存在动力学相变和关键均值程度,在该程度上响应变得无振荡。

We analyse the stability of linear dynamical systems defined on sparse, random graphs with predator-prey, competitive, and mutualistic interactions. These systems are aimed at modelling the stability of fixed points in large systems defined on complex networks, such as, ecosystems consisting of a large number of species that interact through a food-web. We develop an exact theory for the spectral distribution and the leading eigenvalue of the corresponding sparse Jacobian matrices. This theory reveals that the nature of local interactions have a strong influence on system's stability. We show that, in general, linear dynamical systems defined on random graphs with a prescribed degree distribution of unbounded support are unstable if they are large enough, implying a tradeoff between stability and diversity. Remarkably, in contrast to the generic case, antagonistic systems that only contain interactions of the predator-prey type can be stable in the infinite size limit. This qualitatively feature for antagonistic systems is accompanied by a peculiar oscillatory behaviour of the dynamical response of the system after a perturbation, when the mean degree of the graph is small enough. Moreover, for antagonistic systems we also find that there exist a dynamical phase transition and critical mean degree above which the response becomes non-oscillatory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源