论文标题

细粒的分布式平均大型无线电干涉测量集

Fine-grained Distributed Averaging for Large-scale Radio Interferometric Measurement Sets

论文作者

Wei, Shoulin, Luo, Kaida, Wang, Feng, Deng, Hui, Mei, Ying

论文摘要

平方公里的阵列(SKA)将是世界上最大的射电望远镜,最终在一个平方公里的收集区域内。但是,其数据处理存在巨大挑战。使用现代分布式计算技术来解决SKA中大规模数据处理问题的问题是最重要的挑战之一。在这项研究中,基于DASK分布计算框架,并以可见性函数积分处理为例,我们采用了多层并行方法来实现随时间和渠道的分布平均。 Dask数组用于实现具有支持并行性的超大矩阵或阵列。为了最大程度地利用内存的使用,我们进一步利用了Dask提供的数据并行性,该数据平行性智能地在计算机代理网络上分配了计算负载,并具有内置的错误公差机制。还通过使用通用天文学软件应用(CASA)来验证所提出模式的有效性,其中我们分析了从不同分辨率可见性重建图像的涂抹效果。

The Square Kilometer Array (SKA) would be the world's largest radio telescope with eventually over a square kilometer of collecting area. However, there are enormous challenges in its data processing. The using of modern distributed computing techniques to solve the problem of massive data processing in SKA is one of the most important challenges. In this study, basing on the Dask distribution computational framework, and taking the visibility function integral processing as an example, we adopt a multi-level parallelism method to implement distributed averaging over time and channel. Dask Array was used to implement super large matrix or arrays with supported parallelism. To maximize the usage of memory, we further exploit the data parallelism provided by Dask that intelligently distributes the computational load across a network of computer agents and has a built-in fault tolerance mechanism. The validity of the proposed pattern was also verified by using the Common Astronomy Software Application (CASA), wherein we analyze the smearing effects on images reconstructed from different resolution visibilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源