论文标题
在流程挖掘中具有隐私数据发布的实际方面
Practical Aspect of Privacy-Preserving Data Publishing in Process Mining
论文作者
论文摘要
流程挖掘技术(例如过程发现和一致性检查)通过分析信息系统中广泛可用的事件数据,为实际过程提供了见解。这些数据非常有价值,但通常包含敏感信息,并且过程分析师需要平衡机密性和效用。最近,过程挖掘中的隐私问题受到了研究人员的更多关注,该工具应通过一种将解决方案整合并在现实世界中提供的工具来补充。在本文中,我们介绍了一种基于Python的基础架构,该基础架构在过程挖掘中实施了最新的隐私保护技术。基础架构提供了从单个技术到集成为基于Web的工具的技术的层次结构。我们的基础设施管理由隐私保护技术产生的标准和非标准事件数据。它还存储明确的隐私元数据,以跟踪用于保护敏感数据的修改。
Process mining techniques such as process discovery and conformance checking provide insights into actual processes by analyzing event data that are widely available in information systems. These data are very valuable, but often contain sensitive information, and process analysts need to balance confidentiality and utility. Privacy issues in process mining are recently receiving more attention from researchers which should be complemented by a tool to integrate the solutions and make them available in the real world. In this paper, we introduce a Python-based infrastructure implementing state-of-the-art privacy preservation techniques in process mining. The infrastructure provides a hierarchy of usages from single techniques to the collection of techniques, integrated as web-based tools. Our infrastructure manages both standard and non-standard event data resulting from privacy preservation techniques. It also stores explicit privacy metadata to track the modifications applied to protect sensitive data.