论文标题
非合并MIMO多访问通道的联合星座设计
Joint Constellation Design for Noncoherent MIMO Multiple-Access Channels
论文作者
论文摘要
我们考虑了非合并多输入多输出多出访问通道(MAC)的联合星座设计问题。通过分析非合并最大似然检测误差,我们提出了新的设计标准,以最大程度地减少误差概率。作为基线方法,我们将几个现有的设计标准适应了点对点通道的MAC。此外,我们提出了新的设计标准。我们提出的第一个设计指标是成对误差概率指数上非串扰下限和上限的主导项。我们使用riemannian距离在Hermitian阳性确定矩阵的流形中对结合进行了几何解释。通过以高信噪比的分析该指标,我们获得了进一步的简化指标。对于任何给定的星座大小,可以在星座符号集上优化所提出的指标。在简化的度量中,我们提出了一个简单的星座构造,该构造包括对单用户星座进行分区。我们还基于较低维度的预编码个体星座对先前提出的构建进行概括。对于固定的联合星座,可以在用户传输功率上进一步优化设计指标,尤其是当用户以不同的速率传输时。考虑到统一的时空调制,我们调查了将每个单独的星座构建为一组由各自发射功率缩放的截断单一矩阵的选择。数值结果表明,我们所提出的指标具有有意义的指标,可以用作通过数值优化生成星座的目标,该数值优化比常见的基于PILOT的方案和使用现有指标优化的星座更好,相同的传输速率和功率约束。
We consider the joint constellation design problem for the noncoherent multiple-input multiple-output multiple-access channel (MAC). By analyzing the noncoherent maximum-likelihood detection error, we propose novel design criteria so as to minimize the error probability. As a baseline approach, we adapt several existing design criteria for the point-to-point channel to the MAC. Furthermore, we propose new design criteria. Our first proposed design metric is the dominating term in nonasymptotic lower and upper bounds on the pairwise error probability exponent. We give a geometric interpretation of the bound using Riemannian distance in the manifold of Hermitian positive definite matrices. From an analysis of this metric at high signal-to-noise ratio, we obtain further simplified metrics. For any given set of constellation sizes, the proposed metrics can be optimized over the set of constellation symbols. Motivated by the simplified metric, we propose a simple constellation construction consisting in partitioning a single-user constellation. We also provide a generalization of our previously proposed construction based on precoding individual constellations of lower dimensions. For a fixed joint constellation, the design metrics can be further optimized over the per-user transmit power, especially when the users transmit at different rates. Considering unitary space-time modulation, we investigate the option of building each individual constellation as a set of truncated unitary matrices scaled by the respective transmit power. Numerical results show that our proposed metrics are meaningful, and can be used as objectives to generate constellations through numerical optimization that perform better, for the same transmission rate and power constraint, than a common pilot-based scheme and the constellations optimized with existing metrics.