论文标题
立方重力理论中的纠缠熵
Entanglement entropy in cubic gravitational theories
论文作者
论文摘要
我们为通用的引力理论得出全息纠缠熵功能,其作用包含在Riemann Tensor和任何维度中的立方顺序。这是所谓的分裂问题本身表现出来的最简单的情况,我们明确表明文献中存在的两个常见分裂 - 最小和非最低限度 - 产生不同的功能。我们将结果应用于爱因斯坦立方重力中的双重圆盘至4维庞加莱广告中的边界磁盘和边界带的特定示例,并获得了功能的散装纠缠表面,并发现该因果楔形被肯定是针对分布范围和较大的立方体偶数值范围的。
We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature - minimal and non-minimal - produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4-dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.