论文标题
具有快速振荡重量的steklov特征值的均质化
Homogenization of Steklov eigenvalues with rapidly oscillating weights
论文作者
论文摘要
在本文中,我们研究了一个迅速振荡的周期性重量功能的steklov问题的特征值的均质化速率。结果是通过仔细研究边界上的振荡函数以及对本征函数结合的$ l^\ infty $的精确估计来获得的。作为应用程序,我们提供了一些舞者 - {f} u {č} {\'i} k Spectrum的第一个非平地曲线的估计。
In this article we study the homogenization rates of eigenvalues of a Steklov problem with rapidly oscillating periodic weight functions. The results are obtained via a careful study of oscillating functions on the boundary and a precise estimate of the $L^\infty$ bound of eigenfunctions. As an application we provide some estimates on the first nontrivial curve of the Dancer-{F}u{č}{\'ı}k spectrum.