论文标题

弱监督语义分割的因果干预

Causal Intervention for Weakly-Supervised Semantic Segmentation

论文作者

Zhang, Dong, Zhang, Hanwang, Tang, Jinhui, Hua, Xiansheng, Sun, Qianru

论文摘要

我们提出了一个因果推理框架,以改善弱监督的语义分割(WSSS)。具体而言,我们旨在通过仅使用图像级标签(WSSS中最关键的步骤)来生成更好的像素级伪面罩。我们将伪面罩的模棱两可界限的原因归因于混杂的上下文,例如,“马”和“人”的正确图像级分类不仅可能是由于对每个实例的识别,而且还因为它们的共发生上下文而导致了模型检查(例如(例如,CAM))很难区分边界。受此启发,我们提出了一个结构性因果模型,以分析图像,上下文和类标签之间的因果关系。基于它,我们开发了一种新方法:上下文调整(CONTA),以消除图像级分类中的混杂偏置,从而为后续分割模型提供更好的伪掩模作为基础真相。在Pascal VOC 2012和MS-Coco上,我们表明Conta将各种流行的WSS方法推向新的最新技术。

We present a causal inference framework to improve Weakly-Supervised Semantic Segmentation (WSSS). Specifically, we aim to generate better pixel-level pseudo-masks by using only image-level labels -- the most crucial step in WSSS. We attribute the cause of the ambiguous boundaries of pseudo-masks to the confounding context, e.g., the correct image-level classification of "horse" and "person" may be not only due to the recognition of each instance, but also their co-occurrence context, making the model inspection (e.g., CAM) hard to distinguish between the boundaries. Inspired by this, we propose a structural causal model to analyze the causalities among images, contexts, and class labels. Based on it, we develop a new method: Context Adjustment (CONTA), to remove the confounding bias in image-level classification and thus provide better pseudo-masks as ground-truth for the subsequent segmentation model. On PASCAL VOC 2012 and MS-COCO, we show that CONTA boosts various popular WSSS methods to new state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源