论文标题

多任务因果学习与高斯流程

Multi-task Causal Learning with Gaussian Processes

论文作者

Aglietti, Virginia, Damoulas, Theodoros, Álvarez, Mauricio, González, Javier

论文摘要

本文研究了在因果模型的定向无环图(DAG)上定义的一组干预功能的相关结构的问题。当我们有兴趣共同学习干预措施对DAG中不同子集的因果关系的兴趣时,这很有用,DAG中的变量不同,这在医疗保健或运营研究等领域很常见。我们提出了一个称为DAG-GP的第一个多任务因果高斯流程(GP)模型,该模型允许跨连续干预以及在不同变量的实验之间进行信息共享。 DAG-GP在数据可用性方面适合不同的假设,并通过定义明确的积分运算符捕获了在不同维度的输入空间中的功能之间的相关性。我们给出理论上的结果,详细介绍了如何以及如何根据DAG制定DAG-GP模型。我们测试其预测的质量及其校准的不确定性。与单任务模型相比,DAG-GP在各种真实和合成的环境中达到了最佳拟合性能。此外,在顺序决策框架(例如主动学习或贝叶斯优化)中使用时,它有助于比竞争方法更快地选择最佳干预措施。

This paper studies the problem of learning the correlation structure of a set of intervention functions defined on the directed acyclic graph (DAG) of a causal model. This is useful when we are interested in jointly learning the causal effects of interventions on different subsets of variables in a DAG, which is common in field such as healthcare or operations research. We propose the first multi-task causal Gaussian process (GP) model, which we call DAG-GP, that allows for information sharing across continuous interventions and across experiments on different variables. DAG-GP accommodates different assumptions in terms of data availability and captures the correlation between functions lying in input spaces of different dimensionality via a well-defined integral operator. We give theoretical results detailing when and how the DAG-GP model can be formulated depending on the DAG. We test both the quality of its predictions and its calibrated uncertainties. Compared to single-task models, DAG-GP achieves the best fitting performance in a variety of real and synthetic settings. In addition, it helps to select optimal interventions faster than competing approaches when used within sequential decision making frameworks, like active learning or Bayesian optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源