论文标题
观察黑体辐射增强了超低rydberg气体的超沉淀
Observation of Blackbody Radiation Enhanced Superradiance in ultracold Rydberg Gases
论文作者
论文摘要
激发原子的合奏可以在其特征大小小于发射光子的波长时集体同步光的发射。潜在的超高强烈取决于原子集合周围的电磁(光子)场。微波光子的高模式密度从$ 300 \,$ k黑体辐射(BBR)显着提高了Rydberg状态的衰减率到邻近的状态,从而使裸露的自发衰减不可能实现超平稳。在这里,我们报告了嵌入在室温光子浴中的Ultracold Rydberg原子的超沉载的观察。 rydberg $ | nd \ rangle $ to $ |(n+1)p \ rangle $ superradiant衰减的时间演变($ n $ the主量子数)直接在免费空间中测量。理论模拟证实了大型Rydberg合奏中的BBR增强的超高度。我们证明了rydberg原子之间的范德华相互作用改变了超级动力学并修改超级缩放的缩放。在存在静态电场的情况下,我们发现超高光变慢,这可能是由于多体相互作用引起的脱位引起的。我们的研究提供了对与热BBR相连的相互作用原子的多体动力学的见解,并可能通过集体,耗散的光子原子相互作用为微波频率打开黑体温度计的途径。
An ensemble of excited atoms can synchronize emission of light collectively in a process known as superradiance when its characteristic size is smaller than the wavelength of emitted photons. The underlying superradiance depends strongly on electromagnetic (photon) fields surrounding the atomic ensemble. High mode densities of microwave photons from $300\,$K blackbody radiation (BBR) significantly enhance decay rates of Rydberg states to neighbouring states, enabling superradiance that is not possible with bare vacuum induced spontaneous decay. Here we report observations of the superradiance of ultracold Rydberg atoms embedded in a bath of room-temperature photons. The temporal evolution of the Rydberg $|nD\rangle$ to $|(n+1)P\rangle$ superradiant decay of Cs atoms ($n$ the principal quantum number) is measured directly in free space. Theoretical simulations confirm the BBR enhanced superradiance in large Rydberg ensembles. We demonstrate that the van der Waals interactions between Rydberg atoms change the superradiant dynamics and modify the scaling of the superradiance. In the presence of static electric fields, we find that the superradiance becomes slow, potentially due to many-body interaction induced dephasing. Our study provides insights into many-body dynamics of interacting atoms coupled to thermal BBR, and might open a route to the design of blackbody thermometry at microwave frequencies via collective, dissipative photon-atom interactions.