论文标题
通过部分测量的磁性schrödinger操作员的稳定性估计值
Stability estimates for the magnetic Schrödinger operator with partial measurements
论文作者
论文摘要
在本文中,我们研究了稳定性估计,从$ n \ geq 3 $中的简单连接的开放子集中恢复磁场和电势时,从其边界的开放子集的测量值中进行了估计。这个反问题与磁性schrödinger操作员有关。我们的估计是D. Dos Santos Ferreira,C。E。Kenig,J。Sjöstrand和G. Uhlmann在[13]中获得的唯一性结果的定量版本。连续性的模量是对数类型的。
In this article, we study stability estimates when recovering magnetic fields and electric potentials in a simply connected open subset in $R^n$ with $n \geq 3$, from measurements on open subsets of its boundary. This inverse problem is associated with a magnetic Schrödinger operator. Our estimates are quantitative versions of the uniqueness results obtained by D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand and G. Uhlmann in [13]. The moduli of continuity are of logarithmic type.