论文标题

高维无序的对数孔孔吉布斯测量的强副本对称性

Strong replica symmetry for high-dimensional disordered log-concave Gibbs measures

论文作者

Barbier, Jean, Panchenko, Dmitry, Sáenz, Manuel

论文摘要

我们考虑一类通用的对数孔库,可能是随机的(Gibbs)措施。我们证明了一个无限的阶参数家族的浓度,称为多verlap。因为它们完全参数了系统的猝灭吉布斯度量,所以这意味着渐近吉布斯测量值的简单表示,以及变量在很强的意义上的解耦。这些结果可能证明自己在多种情况下有用。尤其是在机器学习和高维推断中,对数洞穴措施出现在凸经验风险最小化,最大A-tosteriori推理或M估计中。我们认为,它们可能适用于在此类设置中为自由能,推理或泛化错误建立某种类型的“副本对称公式”。

We consider a generic class of log-concave, possibly random, (Gibbs) measures. We prove the concentration of an infinite family of order parameters called multioverlaps. Because they completely parametrise the quenched Gibbs measure of the system, this implies a simple representation of the asymptotic Gibbs measures, as well as the decoupling of the variables in a strong sense. These results may prove themselves useful in several contexts. In particular in machine learning and high-dimensional inference, log-concave measures appear in convex empirical risk minimisation, maximum a-posteriori inference or M-estimation. We believe that they may be applicable in establishing some type of "replica symmetric formulas" for the free energy, inference or generalisation error in such settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源