论文标题

通过从分子动力学模拟中提取材料特性,通过多余的深度学习

Extraction of Material Properties through Multi-fidelity Deep Learning from Molecular Dynamics Simulation

论文作者

Islam, Mahmudul, Thakur, Md Shajedul Hoque, Mojumder, Satyajit, Hasan, Mohammad Nasim

论文摘要

使用分子动力学(MD)为任何长的物理过程的合理时间表模拟是计算物理学的主要挑战。在这项研究中,我们实施了一种基于多保真物理知情神经网络(MPINN)的方法,以在大型样品空间中实现远程MD仿真结果,计算成本大大降低。我们目前的多保真研究的保真度是基于MD模拟的集成时间步长。尽管具有较大时间段的MD模拟产生较低准确性的结果,但它可以为MPINN提供足够的计算廉价培训数据,以了解这些低保真性结果与使用较小的模拟时间段获得的高保真MD结果之间的准确关系。我们已经进行了两项基准研究,涉及一个和两个组件LJ系统,以确定通过高计算节省获得准确结果所需的高保真训练数据的最佳百分比。结果表明,重要的系统属性,例如每个原子的系统能量,系统压力和扩散系数,可以高精度确定,同时节省68%的计算成本。最后,为了证明我们目前的方法在实际MD研究中的适用性,我们研究了氩气纳米流体的粘度及其与使用MPINN通过MD模拟的温度和体积分数的变化。然后,我们将它们与以前的许多研究和理论模型进行了比较。我们的结果表明,MPINN可以在广泛的样品空间中预测具有显着数量的MD模拟的精确纳米液体粘度。我们目前的方法是MPINN与MD模拟一起预测纳米级特性的首次实现。这可以铺平途径来研究需要长期MD模拟的更复杂的工程问题。

Simulation of reasonable timescales for any long physical process using molecular dynamics (MD) is a major challenge in computational physics. In this study, we have implemented an approach based on multi-fidelity physics informed neural network (MPINN) to achieve long-range MD simulation results over a large sample space with significantly less computational cost. The fidelity of our present multi-fidelity study is based on the integration timestep size of MD simulations. While MD simulations with larger timestep produce results with lower level of accuracy, it can provide enough computationally cheap training data for MPINN to learn an accurate relationship between these low-fidelity results and high-fidelity MD results obtained using smaller simulation timestep. We have performed two benchmark studies, involving one and two component LJ systems, to determine the optimum percentage of high-fidelity training data required to achieve accurate results with high computational saving. The results show that important system properties such as system energy per atom, system pressure and diffusion coefficients can be determined with high accuracy while saving 68% computational costs. Finally, as a demonstration of the applicability of our present methodology in practical MD studies, we have studied the viscosity of argon-copper nanofluid and its variation with temperature and volume fraction by MD simulation using MPINN. Then we have compared them with numerous previous studies and theoretical models. Our results indicate that MPINN can predict accurate nanofluid viscosity at a wide range of sample space with significantly small number of MD simulations. Our present methodology is the first implementation of MPINN in conjunction with MD simulation for predicting nanoscale properties. This can pave pathways to investigate more complex engineering problems that demand long-range MD simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源