论文标题
无界域中光谱方法的有效缩放和移动技术
Efficient Scaling and Moving Techniques for Spectral Methods in Unbounded Domains
论文作者
论文摘要
当使用Laguerre和Hermite光谱方法在数值求解无限域中的PDE时,在关注区域内分配的搭配点的数量通常不足,尤其是当该区域被扩展或翻译以安全地捕获未知解决方案时。简单地增加搭配点的数量无法确保快速收敛到光谱精度。在本文中,我们提出了一种缩放技术和一种移动技术,以在感兴趣的区域适应足够的搭配点,以实现快速光谱收敛。我们的缩放算法在频域中采用指标,该指标用于确定何时需要缩放,并告知将缩放系数调整以重新分布搭配点以适应解决方案的扩散行为。我们的移动技术采用了外部误差指标,并移动搭配点以捕获翻译。频率和外部错误指示器均仅使用数值解决方案定义。我们将我们的方法应用于许多不同的模型,包括扩散和移动的费米 - 迪拉克分布和非线性狄拉克孤立波,并证明了用于时间依赖性模拟的光谱收敛的恢复。解决线性抛物线问题的性能比较表明,我们的频率缩放算法的表现优于现有缩放方法。我们还显示,我们的频率缩放技术能够跟踪细胞增殖模型中平均细胞大小的爆炸。
When using Laguerre and Hermite spectral methods to numerically solve PDEs in unbounded domains, the number of collocation points assigned inside the region of interest is often insufficient, particularly when the region is expanded or translated to safely capture the unknown solution. Simply increasing the number of collocation points cannot ensure a fast convergence to spectral accuracy. In this paper, we propose a scaling technique and a moving technique to adaptively cluster enough collocation points in a region of interest in order to achieve a fast spectral convergence. Our scaling algorithm employs an indicator in the frequency domain that is used to determine when scaling is needed and informs the tuning of a scaling factor to redistribute collocation points to adapt to the diffusive behavior of the solution. Our moving technique adopts an exterior-error indicator and moves the collocation points to capture the translation. Both frequency and exterior-error indicators are defined using only the numerical solutions. We apply our methods to a number of different models, including diffusive and moving Fermi-Dirac distributions and nonlinear Dirac solitary waves, and demonstrate recovery of spectral convergence for time-dependent simulations. Performance comparison in solving a linear parabolic problem shows that our frequency scaling algorithm outperforms the existing scaling approaches. We also show our frequency scaling technique is able to track the blowup of average cell sizes in a model for cell proliferation.