论文标题
Leclair-Mussardo系列和筑巢的Bethe Ansatz
The LeClair-Mussardo series and nested Bethe Ansatz
论文作者
论文摘要
我们考虑与代数对称$ \ mathfrak {gl}(2 | 1)$和$ \ mathfrak {gl}(3)$相关的一个维量子集成模型中的相关函数。使用代数Bethe Ansatz方法,我们开发了一种扩展定理,该定理导致热力学极限中的无限积分系列。该系列是将Leclair-Mussardo系列的概括为嵌套的Bethe Ansatz Systems,并且适用于单点和两点函数。举例来说,我们考虑在自旋1/2费米颗粒的高丁 - 杨模型中的基态密度密度相关器。明确的公式以特殊的大耦合和较大的不平衡极限呈现。
We consider correlation functions in one dimensional quantum integrable models related to the algebra symmetries $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(3)$. Using the algebraic Bethe Ansatz approach we develop an expansion theorem, which leads to an infinite integral series in the thermodynamic limit. The series is the generalization of the LeClair-Mussardo series to nested Bethe Ansatz systems, and it is applicable both to one-point and two-point functions. As an example we consider the ground state density-density correlator in the Gaudin-Yang model of spin-1/2 Fermi particles. Explicit formulas are presented in a special large coupling and large imbalance limit.