论文标题

评论量子步行对空间搜索的评论对于几乎所有图表都是最佳的

Comment to Spatial Search by Quantum Walk is Optimal for Almost all Graphs

论文作者

Kukulski, Ryszard, Glos, Adam

论文摘要

此评论是为了纠正“量子搜索中显示的erdős-rényi图的量子空间搜索的最佳证明”(量子步行搜索几乎所有图形都是最佳的”(https://doi.org/10.1103/physrevlett.116.100501)。作者声称,如果$ p \ geq \ frac {\ log^{3/2}(n)} {n} $,则基于CTQW的搜索对于几乎所有图形都是最佳的。在下面,我们指出了主要论文中发现的问题,并提出了校正,实际上,在过渡速率$γ= 1/λ_1$的情况下,将结果提高到$ p =ω(\ log(n)/n)$。在简化过渡速率$ 1/(np)$的证明的情况下,我们指出了应用扰动理论的可能问题。

This comment is to correct the proof of optimality of quantum spatial search for Erdős-Rényi graphs presented in `Spatial Search by Quantum Walk is Optimal for Almost all Graphs' (https://doi.org/10.1103/PhysRevLett.116.100501). The authors claim that if $p\geq \frac{\log^{3/2}(n)}{n}$, then the CTQW-based search is optimal for almost all graphs. Below we point the issues found in the main paper, and propose corrections, which in fact improve the result to $p=ω(\log(n)/n)$ in case of transition rate $γ= 1/λ_1$. In the case of the proof for simplified transition rate $1/(np)$ we pointed a possible issue with applying perturbation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源