论文标题

BOML:python中的一个模块化双层优化库用于元学习

BOML: A Modularized Bilevel Optimization Library in Python for Meta Learning

论文作者

Liu, Yaohua, Liu, Risheng

论文摘要

元学习(又名学习学习)最近已成为各种应用程序的有希望的范式。现在有许多元学习方法,每种方法都集中在基础学习者和元学习者的不同建模方面,但是所有这些都可以(重新)作为特定的双层优化问题。这项工作提出了BOML,这是一个模块化的优化库,将几种元学习算法统一到一个共同的双层优化框架中。它提供了层次优化管道以及各种迭代模块,可用于求解元学习方法的主流类别,例如基于元基准的基于元元素和基于元主义的公式。该图书馆用Python编写,可在https://github.com/dut-media-lab/boml上找到。

Meta-learning (a.k.a. learning to learn) has recently emerged as a promising paradigm for a variety of applications. There are now many meta-learning methods, each focusing on different modeling aspects of base and meta learners, but all can be (re)formulated as specific bilevel optimization problems. This work presents BOML, a modularized optimization library that unifies several meta-learning algorithms into a common bilevel optimization framework. It provides a hierarchical optimization pipeline together with a variety of iteration modules, which can be used to solve the mainstream categories of meta-learning methods, such as meta-feature-based and meta-initialization-based formulations. The library is written in Python and is available at https://github.com/dut-media-lab/BOML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源