论文标题
相对论的弗拉索夫气体积聚到移动的Schwarzschild黑洞上:精确的解决方案
Accretion of the relativistic Vlasov gas onto a moving Schwarzschild black hole: Exact solutions
论文作者
论文摘要
我们得出了一个精确的,轴向对称的解决方案,代表相对论的无碰撞vlasov气体的固定积聚到移动的Schwarzschild黑洞上。假定气体在无穷大的热平衡中,遵守麦克斯韦 - 朱斯特纳分布。通过合适的动作角度变量,通过分析求解Vlasov方程。我们为粒子电流密度和积聚速率提供明确的表达式。在气体的无限渐近温度的极限下,我们恢复了已知形式的相对论邦德 - 霍伊尔 - 莱特顿(Bondi-Hoyle-lyttleton),其完美气体具有与状态的超高方程,其中质量积聚与与黑洞速度相关的洛伦兹因子成正比。对于有限的渐近温度,质量吸积率通常不是黑洞速度的单调功能。
We derive an exact, axially symmetric solution representing stationary accretion of the relativistic, collisionless Vlasov gas onto a moving Schwarzschild black hole. The gas is assumed to be in thermal equilibrium at infinity, where it obeys the Maxwell-Jüttner distribution. The Vlasov equation is solved analytically in terms of suitable action-angle variables. We provide explicit expressions for the particle current density and accretion rates. In the limit of infinite asymptotic temperature of the gas, we recover the qualitative picture known form the relativistic Bondi-Hoyle-Lyttleton accretion of the perfect gas with the ultra-hard equation of state, in which the mass accretion is proportional to the Lorentz factor associated with the black-hole velocity. For a finite asymptotic temperature, the mass accretion rate is not in general a monotonic function of the velocity of the black hole.