论文标题

基于过滤数据的多尺度扩散的漂移估计

Drift Estimation of Multiscale Diffusions Based on Filtered Data

论文作者

Abdulle, Assyr, Garegnani, Giacomo, Pavliotis, Grigorios A., Stuart, Andrew M., Zanoni, Andrea

论文摘要

我们研究了两尺度连续时间序列的漂移估计问题。我们将自己设置在过度阻尼的兰格文方程的框架中,为此,单尺度替代方程存在。在这种情况下,估计均质方程的漂移系数需要进行预采样形式的数据进行预处理。这是因为两个尺度方程和均质的单尺度方程在小尺度上不兼容,从而在路径空间上产生了相互奇异的度量。我们避免使用过滤的数据进行亚采样,并通过应用适当的内核函数找到过滤数据,并根据过滤过程计算最大似然估计器。我们表明,我们提出的估计量是渐近公正的,并在数值上证明了我们方法在亚采样方面的优势。最后,我们展示了如何将过滤的数据方法与贝叶斯技术结合在一起,并提供推理过程的完全不确定性量化。

We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift coefficient of the homogenized equation requires pre-processing of the data, often in the form of subsampling; this is because the two-scale equation and the homogenized single-scale equation are incompatible at small scales, generating mutually singular measures on the path space. We avoid subsampling and work instead with filtered data, found by application of an appropriate kernel function, and compute maximum likelihood estimators based on the filtered process. We show that the estimators we propose are asymptotically unbiased and demonstrate numerically the advantages of our method with respect to subsampling. Finally, we show how our filtered data methodology can be combined with Bayesian techniques and provide a full uncertainty quantification of the inference procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源