论文标题
在折叠和双重截断的多元扩展偏斜正常分布的时刻
On moments of folded and doubly truncated multivariate extended skew-normal distributions
论文作者
论文摘要
本文开发了共同关系的复发关系,该积分与多变量扩展偏斜正常(ESN)分布的密度相关联,包括Azzalini和Dalla-Valle(1996)引入的众所周知的偏斜正常(SN)分布和流行的多元正态分布。这些递归提供了快速计算多变量截短的扩展偏斜正常和多变量折叠的扩展偏度分布,产品矩作为副产品。除了复发方法外,我们还意识到,可以使用截断的多变量正态分布的相应力矩来计算截断的多变量扩展偏斜分布的任何任意力矩,这指向更快的算法的方式,因为需要较少数量的积分来评估其计算,从而可以简单地评估。由于有几种方法可以计算多变量截断的正态分布的前两个矩,因此我们提出了一种优化的方法,该方法在时间和准确性方面提供了更好的性能,除了考虑其他方法失败的极端情况外。 R MOMTRUNC软件包为从业者提供了这些新的有效方法。
This paper develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle (1996) and the popular multivariate normal distribution. These recursions offer a fast computation of arbitrary order product moments of the multivariate truncated extended skew-normal and multivariate folded extended skew-normal distributions with the product moments as a byproduct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated multivariate extended skew-normal distribution can be computed using a corresponding moment of a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less number of integrals is required for its computation which result much simpler to evaluate. Since there are several methods available to calculate the first two moments of a multivariate truncated normal distribution, we propose an optimized method that offers a better performance in terms of time and accuracy, in addition to consider extreme cases in which other methods fail. The R MomTrunc package provides these new efficient methods for practitioners.