论文标题
稳定还原定理的分析证明
An Analytic Proof of the Stable Reduction Theorem
论文作者
论文摘要
稳定的还原定理说,可以通过在穿刺处插入某些稳定的曲线来唯一完成(在可能的基本变化之后),可以独特地完成属性曲线的属属曲线。我们使用Kähler-Einstein指标在纤维上的$ \ Mathbb {C} $上定义的曲线提供了新的证明,以在穿刺处获得极限稳定的曲线。
The stable reduction theorem says that a family of curves of genus $g\geq 2$ over a punctured curve can be uniquely completed (after possible base change) by inserting certain stable curves at the punctures. We give a new proof of this result for curves defined over $\mathbb{C}$ using the Kähler-Einstein metrics on the fibers to obtain the limiting stable curves at the punctures.