论文标题

Minkowski Norm和Hessian等轴测图由单位球上的等轴叶诱导

Minkowski norm and Hessian isometry induced by an isoparametric foliation on the unit sphere

论文作者

Xu, Ming

论文摘要

令$ m_t $为单位球上的等式叶叶$(s^{n-1}(1),g^{\ mathrm {st}})$,带有$ d $ princional曲率值。使用$ M_T $引起的球形坐标,我们构建了一个Minkowski Norm,其中包括$ f = r \ sqrt {2f(t)} $,它概括了$(α,β)$ - norm和$(α_1,α_2)$ - norm的概念。使用球形本地帧的技术,当$ f = r \ sqrt {2f(t)} $真正定义了Minkowski Norm时,我们给出了一个精确而明确的答案。使用类似的技术,我们研究了由$ M_T $引起的两个Minkowski规范之间的Hessian等轴测$φ$,该规范可以保留方向并确定球形$ξ$ - 坐标。有两种方法可以通过odes系统或以$ m_t $为$ m_t $的任何普通平面来描述这种$φ$,然后将其简化为$ \ mathbb {r}^2 $在满足某些对称和dproperties上的Minkowski Norms之间的Hessian等轴测图。当$ d> 2 $时,我们可以证明可以通过在legendre转换和积极的标量乘法之间粘合积极的标量乘以和组成来获得此$φ$,因此它必须满足任何正交分解$ \ \ \ mathbb {r}^n = r}^n = \ Mathbf { nonZero $ x = x'+x''$和$φ(x)= \ edimelline {x} = \ edimelline {x}'+\+\ edline {x}'$,带有$ x',\ overline {x}}'\ in \ mathbf in \ mathbf {v}'$和$ x'',\ edline {x}''\ in \ mathbf {v}''$,我们有$ g_x^{f_1}(x'',x'',x)= g _ {\ overline {x}}}}}}^{f_2} {f_2}(f_2}(f_2})作为副产品,我们证明了以下结果。在Indicatrix $(s_f,g)$上,其中$ f $是$ m_t $和$ g $引起的minkowski norm,是hessian公制,叶子$ n_t = s_f \ cap \ cap \ cap \ mathbb {r} _ {> 0} m_0 $ _0 $ isoparametric。 Laugwitz的猜想对于由$ M_T $引起的Minkowski Norm $ f $有效,即,如果其Hessian Metric $ G $在$ \ Mathbb {r}^n \ backslash \ {0 \ {0 \ {0 \} $上均固定,则使用$ n> 2 $,那么$ f $ is euclidean。

Let $M_t$ be an isoparametric foliation on the unit sphere $(S^{n-1}(1),g^{\mathrm{st}})$ with $d$ principal curvature values. Using the spherical coordinates induced by $M_t$, we construct a Minkowski norm with the presentation $F=r\sqrt{2f(t)}$, which generalizes the notions of $(α,β)$-norm and $(α_1,α_2)$-norm. Using the technique of spherical local frame, we give an exact and explicit answer for the question when $F=r\sqrt{2f(t)}$ really defines a Minkowski norm. Using the similar technique, we study the Hessian isometry $Φ$ between two Minkowski norms induced by $M_t$, which preserves the orientation and fixes the spherical $ξ$-coordinates. There are two ways to describe this $Φ$, either by a system of ODEs, or by its restriction to any normal plane for $M_t$, which is then reduced to a Hessian isometry between Minkowski norms on $\mathbb{R}^2$ satisfying certain symmetry and d-properties. When $d>2$, we prove this $Φ$ can be obtained by gluing positive scalar multiplications and compositions between the Legendre transformation and positive scalar multiplications, so it must satisfy the (d)-property for any orthogonal decomposition $\mathbb{R}^n=\mathbf{V}'+\mathbf{V}''$, i.e., for any nonzero $x=x'+x''$ and $Φ(x)=\overline{x}=\overline{x}'+\overline{x}''$, with $x',\overline{x}'\in\mathbf{V}'$ and $x'',\overline{x}''\in\mathbf{V}''$, we have $g_x^{F_1}(x'',x)=g_{\overline{x}}^{F_2}(\overline{x}'',\overline{x}) $. As byproducts, we prove the following results. On the indicatrix $(S_F,g)$, where $F$ is a Minkowski norm induced by $M_t$ and $g$ is the Hessian metric, the foliation $N_t=S_F\cap \mathbb{R}_{>0}M_0$ is isoparametric. Laugwitz Conjecture is valid for a Minkowski norm $F$ induced by $M_t$, i.e, if its Hessian metric $g$ is flat on $\mathbb{R}^n\backslash\{0\}$ with $n>2$, then $F$ is Euclidean.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源