论文标题
同胞壁c的多面体
Isocanted alcoved polytopes
论文作者
论文摘要
通过热带正常的愿望矩阵,我们介绍了同盟的壁coled型多塔,计算其$ f $ - 向量并检查以下五个猜想的有效性:Bárány,Unimodation,nimoditaly,$ 3^d $,flag,flag,flag和立方下限(CLBB)。等立的壁c的多面是中央对称的,几乎简单的立方多面体。它们是分区。我们表明,对于每个维度,都有独特的组合类型。在尺寸$ d $中,一个同龄性的壁coldep polytope具有$ 2^{d+1} -2 $ Vertices,其面部晶格是$ [D+1] $的适当子集的晶格,其直径为$ D+1 $。它们是$ d $ - 基本立方多型的实现。 $ f $ - $ d $的矢量 - 尺寸同龄性的alced alced polytope以整数$ \ lfloor d/3 \ rfloor $达到其最大值。
Through tropical normal idempotent matrices, we introduce isocanted alcoved polytopes, computing their $f$--vectors and checking the validity of the following five conjectures: Bárány, unimodality, $3^d$, flag and cubical lower bound (CLBC). Isocanted alcoved polytopes are centrally symmetric, almost simple cubical polytopes. They are zonotopes. We show that, for each dimension, there is a unique combinatorial type. In dimension $d$, an isocanted alcoved polytope has $2^{d+1}-2$ vertices, its face lattice is the lattice of proper subsets of $[d+1]$ and its diameter is $d+1$. They are realizations of $d$--elementary cubical polytopes. The $f$--vector of a $d$--dimensional isocanted alcoved polytope attains its maximum at the integer $\lfloor d/3\rfloor$.