论文标题

使用多种测量工具的有效研究设计

Efficient Study Design with Multiple Measurement Instruments

论文作者

Bitan, Michal, Gorfine, Malka, Rosen, Laura, Steinberg, David M.

论文摘要

评估暴露的研究的结果通常使用多个测量值。在先前的工作中,使用Buonoccorsi(1991)首次提出的模型,我们表明,将直接(例如生物标志物)和间接(例如自我报告)测量结合起来,比使用单一类型的测量值时获得的真实暴露量比获得的估计值更准确。在本文中,我们提出了一种有效设计的有价值的工具,包括对相关结果的直接测量和间接测量。根据试点或初步研究的数据,该工具可用于在线使用,可作为闪亮的应用程序\ citep {shinyr},可用于计算:(1)统计功率分析所需的样本量,同时优化应除了提供直接衡量暴露(生物标记)(生物标志物)的参与者(自行量)测量的参与者(自行量)测量的所有参与者,这些参与者的参与者(自我标记)均得到了所有参与者的测量。 (2)理想的重复数量; (3)将资源分配给干预和控制武器。此外,我们展示了如何检查结果对基本假设的敏感性。我们使用烟草烟雾和营养的研究来说明我们的分析。在这些示例中,即使假设不精确,也可以找到资源的近乎理想的分配。

Outcomes from studies assessing exposure often use multiple measurements. In previous work, using a model first proposed by Buonoccorsi (1991), we showed that combining direct (e.g. biomarkers) and indirect (e.g. self-report) measurements provides a more accurate picture of true exposure than estimates obtained when using a single type of measurement. In this article, we propose a valuable tool for efficient design of studies that include both direct and indirect measurements of a relevant outcome. Based on data from a pilot or preliminary study, the tool, which is available online as a shiny app \citep{shinyR}, can be used to compute: (1) the sample size required for a statistical power analysis, while optimizing the percent of participants who should provide direct measures of exposure (biomarkers) in addition to the indirect (self-report) measures provided by all participants; (2) the ideal number of replicates; and (3) the allocation of resources to intervention and control arms. In addition we show how to examine the sensitivity of results to underlying assumptions. We illustrate our analysis using studies of tobacco smoke exposure and nutrition. In these examples, a near-optimal allocation of the resources can be found even if the assumptions are not precise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源