论文标题
时空MEG/EEG源成像的统计控制,并具有除外的多任务套索
Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task Lasso
论文作者
论文摘要
检测在认知任务或给定临床状况下大脑区域在何时何地激活何时何时激活,这是非侵入性技术(如磁脑摄影(MEG)(MEG)或脑电图(EEG))的承诺。这个问题(称为来源本地化或源成像)提出了高维统计推断挑战。尽管已经提出了促进正规化的稀疏性来解决回归问题,但尚不清楚如何确保对错误检测的统计控制。此外,M/EEG源成像需要使用时空数据和自相关噪声。为了解决此问题,我们将DeSparsified Lasso估计器(适用于高维线性模型量身定制的估计器)渐近地遵循在稀疏性和中等特征相关假设下的高斯分布,以适合于自相关噪声损坏的时间数据。我们称其为Desparsified多任务套索(D-MTlasso)。我们将D-Mtlasso与空间约束的聚类结合在一起,以减少数据维度,并结合结合以减轻聚类的任意选择;所得的估计量称为簇的DeSparsified多任务套索(ECD-MTLASSO)的集合。关于当前的程序,ECD-MTLASSO的两个优点是,i)它提供了统计保证,ii)允许对空间特异性进行敏感性交易,从而导致强大的适应性方法。对现实的头几何形状以及各种MEG数据集的经验结果进行了广泛的模拟,证明了ECD-MTLASSO的高恢复性能及其主要的实际好处:提供一种统计原则上的MEG/EEG源图的统计学方法。
Detecting where and when brain regions activate in a cognitive task or in a given clinical condition is the promise of non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG). This problem, referred to as source localization, or source imaging, poses however a high-dimensional statistical inference challenge. While sparsity promoting regularizations have been proposed to address the regression problem, it remains unclear how to ensure statistical control of false detections. Moreover, M/EEG source imaging requires to work with spatio-temporal data and autocorrelated noise. To deal with this, we adapt the desparsified Lasso estimator -- an estimator tailored for high dimensional linear model that asymptotically follows a Gaussian distribution under sparsity and moderate feature correlation assumptions -- to temporal data corrupted with autocorrelated noise. We call it the desparsified multi-task Lasso (d-MTLasso). We combine d-MTLasso with spatially constrained clustering to reduce data dimension and with ensembling to mitigate the arbitrary choice of clustering; the resulting estimator is called ensemble of clustered desparsified multi-task Lasso (ecd-MTLasso). With respect to the current procedures, the two advantages of ecd-MTLasso are that i)it offers statistical guarantees and ii)it allows to trade spatial specificity for sensitivity, leading to a powerful adaptive method. Extensive simulations on realistic head geometries, as well as empirical results on various MEG datasets, demonstrate the high recovery performance of ecd-MTLasso and its primary practical benefit: offer a statistically principled way to threshold MEG/EEG source maps.