论文标题
9〜GHz测量通过连接硅光子和集成电子的挤压光测量
9~GHz measurement of squeezed light by interfacing silicon photonics and integrated electronics
论文作者
论文摘要
光子量子技术可以通过整体制造的基础量子硬件和相应的经典读数和控制电子设备来增强。总之,这可以实现小量子设备的微型化和质量制造 - 例如量子通信节点,量子传感器和随机性的来源 - 并承诺组装有用的量子计算机所需的精确性和规模。在这里,我们将CMOS兼容的硅和硅胶纳米 - 光子胶质学与硅 - 阵线集成的放大电子设备相结合,以提高芯片同源性检测量子光的性能。我们观察到3 dB的带宽为1.7 GHz,Shot-Noise Limited性能超过9 GHz,并将所需的足迹降至0.84毫米。我们使用该设备观察到在硝酸锂波导中产生的量子挤压光,从100 MHz到9 GHz。这表明,全面的方法可为量子技术产生更快的同源探测器,而不是迄今为止实现的量子,并为光子量子设备的全栈整合开辟了道路。
Photonic quantum technology can be enhanced by monolithic fabrication of both the underpinning quantum hardware and the corresponding electronics for classical readout and control. Together, this enables miniaturisation and mass-manufacture of small quantum devices---such as quantum communication nodes, quantum sensors and sources of randomness---and promises the precision and scale of fabrication required to assemble useful quantum computers. Here we combine CMOS compatible silicon and germanium-on-silicon nano-photonics with silicon-germanium integrated amplification electronics to improve performance of on-chip homodyne detection of quantum light. We observe a 3 dB bandwidth of 1.7 GHz, shot-noise limited performance beyond 9 GHz and minaturise the required footprint to 0.84 mm. We use the device to observe quantum squeezed light, from 100 MHz to 9 GHz, generated in a lithium niobate waveguide. This demonstrates that an all-integrated approach yields faster homodyne detectors for quantum technology than has been achieved to-date and opens the way to full-stack integration of photonic quantum devices.