论文标题

三个不同平滑核的非局部进化问题的均质化

Homogenization for nonlocal evolution problems with three different smooth kernels

论文作者

Capanna, Monia, Nakasato, Jean C., Pereira, Marcone C., Rossi, Julio D.

论文摘要

在本文中,我们考虑了与跳跃过程相关的进化问题的均质化,该跳动过程涉及三个不同的平滑核,这些光滑核控制着域的不同部分的跳跃。我们假设空间域分为两个子域的序列$ a_n \ cup b_n $,我们有三个不同的平滑核,一个将跳跃从$ a_n $到$ a_n $,第二个控制跳跃的$ a_n $,将跳跃从$ b_n $和$ b_n $和第三个互动的跳跃和$ a_n $ a_n $ a_n $ a_n和$ a_n之间的互动。 $χ_{a_n}(x)\ to x(x)$在$ l^\ infty $中弱(然后$χ_{b_n}(x)(x)\至1-x(x)\ in $ l^\ infty $中的$ l^\ infty $中的$ n \ as $ n \作为$ n \ to \ infty $,并在\ infty $中给出了$ limient $ limient $ limitive $ u _ $ u _ l^limite $ l^limitive l^2 2 2 2三个内核和极限函数$ x $出现。当初始条件在某个时刻是三角洲时,$δ{\ bar {x}} $(这对应于$ \ bar {x} $开始的过程,我们表明,$ \ bar {x} \ in a_jj} $ n_j} $ n $ n $ \ n $足够大。 我们还根据随机过程来提供对该演化方程的概率解释,该过程描述了根据三种不同核的粒子运动的运动,该粒子在$ω$中跳跃,并表明基础过程在分布中将分布收敛到与限制方程相关的极限过程。 我们将分析集中在Neumann类型边界条件上,并在最后简要描述如何处理Dirichlet边界条件。

In this paper we consider the homogenization of the evolution problem associated with a jump process that involves three different smooth kernels that govern the jumps to/from different parts of the domain. We assume that the spacial domain is divided into a sequence of two subdomains $A_n \cup B_n$ and we have three different smooth kernels, one that controls the jumps from $A_n$ to $A_n$, a second one that controls the jumps from $B_n$ to $B_n$ and the third one that governs the interactions between $A_n$ and $B_n$.Assuming that $χ_{A_n} (x) \to X(x)$ weakly in $L^\infty$ (and then $χ_{B_n} (x) \to 1-X(x)$ weakly in $L^\infty$) as $n \to \infty$ and that the initial condition is given by a density $u_0$ in $L^2$ we show that there is an homogenized limit system in which the three kernels and the limit function $X$ appear. When the initial condition is a delta at one point, $δ_{\bar{x}}$ (this corresponds to the process that starts at $\bar{x}$) we show that there is convergence along subsequences such that $\bar{x} \in A_{n_j}$ or $\bar{x} \in B_{n_j}$ for every $n_j$ large enough. We also provide a probabilistic interpretation of this evolution equation in terms of a stochastic process that describes the movement of a particle that jumps in $Ω$ according to the three different kernels and show that the underlying process converges in distribution to a limit process associated with the limit equation. We focus our analysis in Neumann type boundary conditions and briefly describe at the end how to deal with Dirichlet boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源