论文标题

使用时尚和互补上下文信息影响野外表达行为分析

Affect Expression Behaviour Analysis in the Wild using Spatio-Channel Attention and Complementary Context Information

论文作者

Gera, Darshan, Balasubramanian, S

论文摘要

野外面部表达识别(FER)对于建立可靠的人类计算机交互式系统至关重要。但是,当前的FER系统在各种自然和非控制条件下都无法表现良好。该报告介绍了我们提交的基于注意力的框架,用于表达识别情感行为分析(ABAW)2020年竞赛的表达识别轨迹。空间通道注意网(SCAN)用于提取本地和全球的专注特征,而无需从地标探测器中寻求任何信息。扫描是补充互补的上下文信息(CCI)分支,该信息使用有效的通道注意(ECA)来增强功能的相关性。该模型的性能在具有挑战性的AFF-WILD2数据集上进行了验证,以进行分类表达分类。

Facial expression recognition(FER) in the wild is crucial for building reliable human-computer interactive systems. However, current FER systems fail to perform well under various natural and un-controlled conditions. This report presents attention based framework used in our submission to expression recognition track of the Affective Behaviour Analysis in-the-wild (ABAW) 2020 competition. Spatial-channel attention net(SCAN) is used to extract local and global attentive features without seeking any information from landmark detectors. SCAN is complemented by a complementary context information(CCI) branch which uses efficient channel attention(ECA) to enhance the relevance of features. The performance of the model is validated on challenging Aff-Wild2 dataset for categorical expression classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源