论文标题
水的量子磁性类似物
A quantum magnetic analogue to the critical point of water
论文作者
论文摘要
在水中熟悉的液态气相变,密度在大气压下不连续跳跃,但是这些一阶转变的线是通过在临界点终止的压力来定义的,这是统计热力学中无处不在的概念。在相关的量子材料中,预测并测量了一个临界点,以终止Mott Metal-Metal-Metulator跃迁的线,这也是一阶不连续电荷密度。在量子自旋系统中,已经对连续的量子相变(QPT)进行了广泛研究,但不连续的QPT受到了较少的关注。沮丧的量子抗铁磁铁Srcu $ _2 $(bo $ _3 $)$ _ 2 $构成了差不多的实现范式的Shastry-Sutherland模型,并显示了包括磁性现象,包括磁性plateaux,plapleaux,andomalos symalos symalemalsmits和不连续的Qpts。我们通过在压力和施加的磁场下进行高精度特异性加热测量结果证明,这些磁场像水一样,Srcu $ _2 $(BO $ _3 $)$ _ 2 $具有终止一阶过渡线的临界点,将一阶过渡线与磁性颗粒的不同阶段(三元)分开。我们通过使用新开发的有限温度张量张量 - 网络方法来详细的数值计算来实现数据的定量解释。这些结果为理解量子磁性材料的热力学开辟了一个新的维度,其中各向异性自旋相互作用产生了用于Spintronic应用的拓扑特性,推动了对一阶Qpts的越来越多的关注。
At the familiar liquid-gas phase transition in water, the density jumps discontinuously at atmospheric pressure, but the line of these first-order transitions defined by increasing pressures terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, a critical point was predicted and measured terminating the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge density. In quantum spin systems, continuous quantum phase transitions (QPTs) have been investigated extensively, but discontinuous QPTs have received less attention. The frustrated quantum antiferromagnet SrCu$_2$(BO$_3$)$_2$ constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model and displays exotic phenomena including magnetization plateaux, anomalous thermodynamics and discontinuous QPTs. We demonstrate by high-precision specific-heat measurements under pressure and applied magnetic field that, like water, the pressure-temperature phase diagram of SrCu$_2$(BO$_3$)$_2$ has an Ising critical point terminating a first-order transition line, which separates phases with different densities of magnetic particles (triplets). We achieve a quantitative explanation of our data by detailed numerical calculations using newly-developed finite-temperature tensor-network methods. These results open a new dimension in understanding the thermodynamics of quantum magnetic materials, where the anisotropic spin interactions producing topological properties for spintronic applications drive an increasing focus on first-order QPTs.