论文标题
二维合金和分形异质结构的晶格热传输
Lattice Thermal Transport in Two-Dimensional Alloys and Fractal Heterostructures
论文作者
论文摘要
在二维材料,合金和异质结构中的工程热传输对于下一代柔性光电和能量收集设备的设计至关重要。在这些超薄系统中,晶格热导率的直接实验表征是具有挑战性的,掺杂原子和异偶相界面的影响是在合成过程中无意间或故意材料设计的一部分引入的,对热运输特性的一部分也不理解。 Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of (Mo|W)Se$_2$ monolayer crystals including Mo$_{1-x}$W$_x$Se$_2$ alloys with substitutional point defects, periodic MoSe$_2$|WSe$_2$ heterostructures with characteristic length scales and scale-free fractal Mose $ _2 $ | WSE $ _2 $异质结构。这些特征中的每一个都对晶体中的声子传播都有明显的影响,该晶体可用于设计具有高度可调的热导率的分形和周期性合金结构。对晶格导热率的控制将使从热屏障到热电学的应用。
Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of (Mo|W)Se$_2$ monolayer crystals including Mo$_{1-x}$W$_x$Se$_2$ alloys with substitutional point defects, periodic MoSe$_2$|WSe$_2$ heterostructures with characteristic length scales and scale-free fractal MoSe$_2$|WSe$_2$ heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.