论文标题

坐标bethe ansatz适用于Inozemtsev模型

How coordinate Bethe ansatz works for Inozemtsev model

论文作者

Klabbers, Rob, Lamers, Jules

论文摘要

三十年前,Inozemtsev在Heisenberg和Haldane-Shastry和Haldane-Shastry(HS)旋转链之间插入了一个各向同性的远程旋转链,同时基于与椭圆形的Calogero-Sutherland模型的联系,在整个过程中插入了精确的溶液。尽管普遍认为Inozemtsev的自旋链被认为是量子整合的,但尚不清楚其确切可溶性的基本代数原因。为了朝这个方向迈出的一步,我们完善了InozemtSev的“扩展坐标bethe ansatz”,并阐明了模型精确光谱及其限制的各个方面。 我们识别出Quasimomenta,从$ M $零件的能量接近(功能上)添加剂,正如人们对限制模型所期望的那样;我们的表达是加性的,如果椭圆形的calogero-sutherland系统的能量是如此。这使我们能够在椭圆曲线上重写能量和贝塞 - 萨茨方程,从而将光谱问题转变为各向同性自旋链可能预期的理性问题。 我们将$ M = 2 $粒子部门及其详细范围进行处理。我们确定独立于职位的$ S $ -MATRIX。我们表明,贝塞 - 阿萨茨方程将在一个限制下减少到海森堡的方程式,并在另一个极限内引起HS的“主题”。我们表明,随着插值参数的变化,海森伯格的“散射状态”成为HS的Yangian最高权重状态,而BOND BOUND状态($ \ Mathfrak {SL} _2 $ - 最高的重量版本的最高权重)来自$ M = 1 $。对于结合状态,我们发现了海森堡自旋链的“临界长度”的已知方程式的概括。我们通过传递到椭圆曲线来讨论$ m = 2 $的完整性。 我们对海森堡和HS旋转链的两粒子部门的回顾可能引起了独立的关注。

Three decades ago, Inozemtsev found an isotropic long-range spin chain with elliptic pair potential that interpolates between the Heisenberg and Haldane-Shastry (HS) spin chains while admitting an exact solution throughout, based on a connection with the elliptic quantum Calogero-Sutherland model. Though Inozemtsev's spin chain is widely believed to be quantum integrable, the underlying algebraic reason for its exact solvability is not yet well understood. As a step in this direction we refine Inozemtsev's `extended coordinate Bethe ansatz' and clarify various aspects of the model's exact spectrum and its limits. We identify quasimomenta in terms of which the $M$-particle energy is close to being (functionally) additive, as one would expect from the limiting models; our expression is additive iff the energy of the elliptic Calogero-Sutherland system is so. This enables us to rewrite the energy and Bethe-ansatz equations on the elliptic curve, turning the spectral problem into a rational problem as might be expected for an isotropic spin chain. We treat the $M=2$ particle sector and its limits in detail. We identify an $S$-matrix that is independent of positions. We show that the Bethe-ansatz equations reduce to those of Heisenberg in one limit and give rise to the `motifs' of HS in the other limit. We show that, as the interpolation parameter changes, the `scattering states' from Heisenberg become Yangian highest-weight states for HS, while bound states become ($\mathfrak{sl}_2$-highest weight versions of) affine descendants of the magnons from $M=1$. For bound states we find a generalisation of the known equation for the `critical length' for the Heisenberg spin chain. We discuss completeness for $M=2$ by passing to the elliptic curve. Our review of the two-particle sectors of the Heisenberg and HS spin chains may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源