论文标题

COVID-19建模新南威尔士州(NSW)的社会经济和健康数据 - 澳大利亚:通过地理空间分析和地理位置加权泊松回归(GWPR)的方法

Covid-19 Modeling towards socioeconomic and health data from New South Wales (NSW) -- Australia: An approach via Geospatial Analysis and Geographically Weighted Poisson Regression (GWPR)

论文作者

Xavier-Conceicao, Francelino A.

论文摘要

本研究使用了空间数据分析和地理加权泊松回归(GWPR)的综合方法以及全球回归技术。这种方法旨在模拟因变量COVID-19与新南威尔士州地方政府地区(LGA)内部社会经济和预先存在的健康状况的独立变量之间的关系。基于地理空间数据分析以及构建全球和GWPR模型的逐步过程,最终选择了四(4)个自变量,以研究本地规模的因变量和自变量之间的关系。 GWPR模型的拟合优点(R2)的结果在45-73%之间范围内表现出共同人口与总人口,癌症,以及在新南威尔士州大多数国家中60至85岁之间的人群之间的正相关关系。同时,在Covid-19和缺血性心脏病之间观察到负相关。但是,这种关系的估计系数非常低,接近零。因此,需要进一步的调查,包括从不同的角度进行评估,是验证所必需的。总之,该模型表明因变量和自变量之间的关系是非组织的。因此,GWPR模型校准在本地规模的地理建模中起着至关重要的作用。

An integrated approach of spatial data analysis and Geographically Weighted Poisson Regression (GWPR) along with global regression techniques are used in this study. This approach aims to model relationships between dependent variable Covid-19 and independent variables from socioeconomic and pre-existing health conditions within the local government area (LGA) in New South Wales (NSW)-Australia. Based on geospatial data analysis and a step-by-step procedure in building both global and GWPR models, four (4) independent variables are finally selected to investigate relationships between dependent and independent variables at the local scale. The GWPR model's results with the Goodness-of-Fit (R2) range between 45-73% exhibit positive relationships between Covid-19 and the total population, the cancers, and the people with ages between 60 and 85 in most of the NSW state. Meanwhile, a negative relationship is observed between Covid-19 and the ischaemic heart disease; however, the estimated coefficients for this relationship are very low and close to zero; hence further investigation, including assessment from a different perspective, is necessary for validation. In conclusion, the model suggests that the relationships between the dependent variable and independent variables are nonstationary. Therefore, GWPR model calibration plays a vital role in geographic modelling at the local scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源