论文标题

RTFE:时间知识图完成的递归时间事实嵌入框架

RTFE: A Recursive Temporal Fact Embedding Framework for Temporal Knowledge Graph Completion

论文作者

Xu, Youri, Haihong, E, Song, Meina, Song, Wenyu, Lv, Xiaodong, Haotian, Wang, Jinrui, Yang

论文摘要

在过去的几年中,对静态知识图(SKG)嵌入(SKGE)进行了深入研究。最近,出现了时间知识图(TKG)嵌入(TKGE)。在本文中,我们提出了一个递归的时间事实嵌入(RTFE)框架,以将Skge模型移植到TKGS,并提高现有TKGE模型以完成TKG完成。与以前的工作不同的是忽略了TKG状态在时间演化中的连续性,我们将图的序列视为马尔可夫链,后者从先前的状态过渡到下一个状态。 RTFE采用Skge来初始化TKG的嵌入。然后,它通过在时间戳之间传递更新的参数/功能来递归跟踪TKG的状态过渡。具体而言,在每个时间戳上,我们将状态过渡近似为梯度更新过程。由于RTFE递归地学习每个时间戳,因此它可以自然地转移到未来的时间戳。五个TKG数据集的实验显示了RTFE的有效性。

Static knowledge graph (SKG) embedding (SKGE) has been studied intensively in the past years. Recently, temporal knowledge graph (TKG) embedding (TKGE) has emerged. In this paper, we propose a Recursive Temporal Fact Embedding (RTFE) framework to transplant SKGE models to TKGs and to enhance the performance of existing TKGE models for TKG completion. Different from previous work which ignores the continuity of states of TKG in time evolution, we treat the sequence of graphs as a Markov chain, which transitions from the previous state to the next state. RTFE takes the SKGE to initialize the embeddings of TKG. Then it recursively tracks the state transition of TKG by passing updated parameters/features between timestamps. Specifically, at each timestamp, we approximate the state transition as the gradient update process. Since RTFE learns each timestamp recursively, it can naturally transit to future timestamps. Experiments on five TKG datasets show the effectiveness of RTFE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源