论文标题

RESGCN:基于注意的归因网络异常检测的深度残差模型

ResGCN: Attention-based Deep Residual Modeling for Anomaly Detection on Attributed Networks

论文作者

Pei, Yulong, Huang, Tianjin, van Ipenburg, Werner, Pechenizkiy, Mykola

论文摘要

有效地检测归因网络中的异常淋巴结对于许多现实世界应用(例如欺诈和入侵检测)的成功至关重要。现有方法在三个主要问题上遇到困难:稀疏性和非线性捕获,残留建模和网络平滑。我们提出了剩余图形卷积网络(RESGCN),这是一种基于注意力的深度剩余建模方法,可以解决这些问题:使用GCN对属性网络进行建模允许捕获稀疏性和非线性;利用深层神经网络可以直接从输入中学习残留,而基于残留的注意机制可减少异常节点的不良影响,并防止过度光滑。在几个现实世界中归因网络的广泛实验证明了RESGCN在检测异常方面的有效性。

Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing. We propose Residual Graph Convolutional Network (ResGCN), an attention-based deep residual modeling approach that can tackle these issues: modeling the attributed networks with GCN allows to capture the sparsity and nonlinearity; utilizing a deep neural network allows to directly learn residual from the input, and a residual-based attention mechanism reduces the adverse effect from anomalous nodes and prevents over-smoothing. Extensive experiments on several real-world attributed networks demonstrate the effectiveness of ResGCN in detecting anomalies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源