论文标题
psyquandle计数不变的旋转酶增强
Cocycle Enhancements of Psyquandle Counting Invariants
论文作者
论文摘要
我们将Cocycle增强理论带入Psyquandles。类似于我们以前关于虚拟双Quandle Cocycle增强功能的工作,我们通过成对的Biquandle 2 cocycle和满足某些条件的新功能来定义Psyquandle计数的增强。作为一个应用,我们定义了定向伪诺和奇异结和链接的新的单变量和两变量多项式不变。我们提供的例子表明,新的不变性是计数不变的适当增强,不是由Jablan多项式确定的。
We bring cocycle enhancement theory to the case of psyquandles. Analogously to our previous work on virtual biquandle cocycle enhancements, we define enhancements of the psyquandle counting invariant via pairs of a biquandle 2-cocycle and a new function satisfying some conditions. As an application we define new single-variable and two-variable polynomial invariants of oriented pseudoknots and singular knots and links. We provide examples to show that the new invariants are proper enhancements of the counting invariant are are not determined by the Jablan polynomial.